Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Melanoma: HELP
Articles by Steven D. Bines
Based on 5 articles published since 2008
||||

Between 2008 and 2019, Steven D. Bines wrote the following 5 articles about Melanoma.
 
+ Citations + Abstracts
1 Guideline The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. 2013

Kaufman, Howard L / Kirkwood, John M / Hodi, F Stephen / Agarwala, Sanjiv / Amatruda, Thomas / Bines, Steven D / Clark, Joseph I / Curti, Brendan / Ernstoff, Marc S / Gajewski, Thomas / Gonzalez, Rene / Hyde, Laura Jane / Lawson, David / Lotze, Michael / Lutzky, Jose / Margolin, Kim / McDermott, David F / Morton, Donald / Pavlick, Anna / Richards, Jon M / Sharfman, William / Sondak, Vernon K / Sosman, Jeffrey / Steel, Susan / Tarhini, Ahmad / Thompson, John A / Titze, Jill / Urba, Walter / White, Richard / Atkins, Michael B. ·Rush University Cancer Center, 1725 West Harrison Street, Chicago, IL 60612, USA. ·Nat Rev Clin Oncol · Pubmed #23982524.

ABSTRACT: Immunotherapy is associated with durable clinical benefit in patients with melanoma. The goal of this article is to provide evidence-based consensus recommendations for the use of immunotherapy in the clinical management of patients with high-risk and advanced-stage melanoma in the USA. To achieve this goal, the Society for Immunotherapy of Cancer sponsored a panel of melanoma experts--including physicians, nurses, and patient advocates--to develop a consensus for the clinical application of tumour immunotherapy for patients with melanoma. The Institute of Medicine clinical practice guidelines were used as a basis for this consensus development. A systematic literature search was performed for high-impact studies in English between 1992 and 2012 and was supplemented as appropriate by the panel. This consensus report focuses on issues related to patient selection, toxicity management, clinical end points and sequencing or combination of therapy. The literature review and consensus panel voting and discussion were used to generate recommendations for the use of immunotherapy in patients with melanoma, and to assess and rate the strength of the supporting evidence. From the peer-reviewed literature the consensus panel identified a role for interferon-α2b, pegylated-interferon-α2b, interleukin-2 (IL-2) and ipilimumab in the clinical management of melanoma. Expert recommendations for how to incorporate these agents into the therapeutic approach to melanoma are provided in this consensus statement. Tumour immunotherapy is a useful therapeutic strategy in the management of patients with melanoma and evidence-based consensus recommendations for clinical integration are provided and will be updated as warranted.

2 Review Optimal management of metastatic melanoma: current strategies and future directions. 2013

Batus, Marta / Waheed, Salman / Ruby, Carl / Petersen, Lindsay / Bines, Steven D / Kaufman, Howard L. ·Rush University Melanoma Program and Departments of Medicine, General Surgery and Immunology and Microbiology, Rush University Medical Center, 1725 W. Harrison Street, Room 845, Chicago, IL 60612, USA. ·Am J Clin Dermatol · Pubmed #23677693.

ABSTRACT: Melanoma is increasing in incidence and remains a major public health threat. Although the disease may be curable when identified early, advanced melanoma is characterized by widespread metastatic disease and a median survival of less than 10 months. In recent years, however, major advances in our understanding of the molecular nature of melanoma and the interaction of melanoma cells with the immune system have resulted in several new therapeutic strategies that are showing significant clinical benefit. Current therapeutic approaches include surgical resection of metastatic disease, chemotherapy, immunotherapy, and targeted therapy. Dacarbazine, interleukin-2, ipilimumab, and vemurafenib are now approved for the treatment of advanced melanoma. In addition, new combination chemotherapy regimens, monoclonal antibodies blocking the programmed death-1 (PD-1)/PD-ligand 1 pathway, and targeted therapy against CKIT, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and other putative signaling pathways in melanoma are beginning to show promise in early-phase clinical trials. Further research on these modalities alone and in combination will likely be the focus of future clinical investigation and may impact the outcomes for patients with advanced melanoma.

3 Clinical Trial Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma. 2017

Faries, Mark B / Thompson, John F / Cochran, Alistair J / Andtbacka, Robert H / Mozzillo, Nicola / Zager, Jonathan S / Jahkola, Tiina / Bowles, Tawnya L / Testori, Alessandro / Beitsch, Peter D / Hoekstra, Harald J / Moncrieff, Marc / Ingvar, Christian / Wouters, Michel W J M / Sabel, Michael S / Levine, Edward A / Agnese, Doreen / Henderson, Michael / Dummer, Reinhard / Rossi, Carlo R / Neves, Rogerio I / Trocha, Steven D / Wright, Frances / Byrd, David R / Matter, Maurice / Hsueh, Eddy / MacKenzie-Ross, Alastair / Johnson, Douglas B / Terheyden, Patrick / Berger, Adam C / Huston, Tara L / Wayne, Jeffrey D / Smithers, B Mark / Neuman, Heather B / Schneebaum, Schlomo / Gershenwald, Jeffrey E / Ariyan, Charlotte E / Desai, Darius C / Jacobs, Lisa / McMasters, Kelly M / Gesierich, Anja / Hersey, Peter / Bines, Steven D / Kane, John M / Barth, Richard J / McKinnon, Gregory / Farma, Jeffrey M / Schultz, Erwin / Vidal-Sicart, Sergi / Hoefer, Richard A / Lewis, James M / Scheri, Randall / Kelley, Mark C / Nieweg, Omgo E / Noyes, R Dirk / Hoon, Dave S B / Wang, He-Jing / Elashoff, David A / Elashoff, Robert M. ·From the John Wayne Cancer Institute at Saint John's Health Center, Santa Monica (M.B.F., D.S.B.H.), and the Departments of Pathology (A.J.C.), Biomathematics (H.-J.W., D.A.E., R.M.E.), and Medicine (D.A.E.), University of California, Los Angeles - both in California · Melanoma Institute Australia and the University of Sydney, Sydney (J.F.T., O.E.N.), Peter MacCallum Cancer Centre, Melbourne, VIC (M.H.), Princess Alexandra Hospital, Brisbane, QLD (B.M.S.), and Newcastle Melanoma Unit, Waratah, NSW (P.H.) - all in Australia · Huntsman Cancer Institute, Salt Lake City (R.H.A., R.D.N.), and Intermountain Healthcare Cancer Services-Intermountain Medical Center, Murray (T.L.B.) - both in Utah · Istituto Nazionale dei Tumori Napoli, Naples (N.M.), Istituto Europeo di Oncologia, Milan (A.T.), and Istituto Oncologico Veneto-University of Padua, Padua (C.R.R.) - all in Italy · H. Lee Moffitt Cancer Center, Tampa, FL (J.S.Z.) · Helsinki University Hospital, Helsinki (T.J.) · Dallas Surgical Group, Dallas (P.D.B.) · Universitair Medisch Centrum Groningen, Groningen (H.J.H.), and Netherlands Cancer Institute, Amsterdam (M.W.J.M.W.) - both in the Netherlands · Norfolk and Norwich University Hospital, Norwich (M. Moncrieff), and Guy's and St. Thomas' NHS Foundation Trust, London (A.M.-R.) - both in the United Kingdom · Swedish Melanoma Study Group-University Hospital Lund, Lund, Sweden (C.I.) · University of Michigan, Ann Arbor (M.S.S.) · Wake Forest University, Winston-Salem (E.A.L.), and Duke University, Durham (R.S.) - both in North Carolina · Ohio State University, Columbus (D.A.) · University of Zurich, Zurich (R.D.), and Centre Hospitalier Universitaire Vaudois, Lausanne (M. Matter) - both in Switzerland · Penn State Hershey Cancer Institute, Hershey (R.I.N.), Thomas Jefferson University (A.C.B.) and Fox Chase Cancer Center (J.M.F.), Philadelphia, and St. Luke's University Health Network, Bethlehem (D.C.D.) - all in Pennsylvania · Greenville Health System Cancer Center, Greenville, SC (S.D.T.) · Sunnybrook Research Institute, Toronto (F.W.), and Tom Baker Cancer Centre, Calgary, AB (G.M.) - both in Canada · University of Washington, Seattle (D.R.B.) · Saint Louis University, St. Louis (E.H.) · Vanderbilt University (D.B.J., M.C.K.), Nashville, and University of Tennessee, Knoxville (J.M.L.) - both in Tennessee · University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck (P.T.), University Hospital of Würzburg, Würzburg (A.G.), and City Hospital of Nürnberg, Nuremberg (E.S.) - all in Germany · SUNY at Stony Brook Hospital Medical Center, Stony Brook (T.L.H.), Memorial Sloan Kettering Cancer Center, New York (C.E.A.), and Roswell Park Cancer Institute, Buffalo (J.M.K.) - all in New York · Northwestern University Feinberg School of Medicine (J.D.W.) and Rush University Medical Center (S.D.B.), Chicago · University of Wisconsin, Madison (H.B.N.) · Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (S.S.) · M.D. Anderson Medical Center, Houston (J.E.G.) · Johns Hopkins University School of Medicine, Baltimore (L.J.) · University of Louisville, Louisville, KY (K.M.M.) · Dartmouth-Hitchcock Medical Center, Lebanon, NH (R.J.B.) · Hospital Clinic Barcelona, Barcelona (S.V.-S.) · and Sentara CarePlex Hospital, Hampton, VA (R.A.H.). ·N Engl J Med · Pubmed #28591523.

ABSTRACT: BACKGROUND: Sentinel-lymph-node biopsy is associated with increased melanoma-specific survival (i.e., survival until death from melanoma) among patients with node-positive intermediate-thickness melanomas (1.2 to 3.5 mm). The value of completion lymph-node dissection for patients with sentinel-node metastases is not clear. METHODS: In an international trial, we randomly assigned patients with sentinel-node metastases detected by means of standard pathological assessment or a multimarker molecular assay to immediate completion lymph-node dissection (dissection group) or nodal observation with ultrasonography (observation group). The primary end point was melanoma-specific survival. Secondary end points included disease-free survival and the cumulative rate of nonsentinel-node metastasis. RESULTS: Immediate completion lymph-node dissection was not associated with increased melanoma-specific survival among 1934 patients with data that could be evaluated in an intention-to-treat analysis or among 1755 patients in the per-protocol analysis. In the per-protocol analysis, the mean (±SE) 3-year rate of melanoma-specific survival was similar in the dissection group and the observation group (86±1.3% and 86±1.2%, respectively; P=0.42 by the log-rank test) at a median follow-up of 43 months. The rate of disease-free survival was slightly higher in the dissection group than in the observation group (68±1.7% and 63±1.7%, respectively; P=0.05 by the log-rank test) at 3 years, based on an increased rate of disease control in the regional nodes at 3 years (92±1.0% vs. 77±1.5%; P<0.001 by the log-rank test); these results must be interpreted with caution. Nonsentinel-node metastases, identified in 11.5% of the patients in the dissection group, were a strong, independent prognostic factor for recurrence (hazard ratio, 1.78; P=0.005). Lymphedema was observed in 24.1% of the patients in the dissection group and in 6.3% of those in the observation group. CONCLUSIONS: Immediate completion lymph-node dissection increased the rate of regional disease control and provided prognostic information but did not increase melanoma-specific survival among patients with melanoma and sentinel-node metastases. (Funded by the National Cancer Institute and others; MSLT-II ClinicalTrials.gov number, NCT00297895 .).

4 Clinical Trial OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. 2010

Kaufman, Howard L / Bines, Steven D. ·The Tumor Immunology Laboratory & Department of General Surgery, Rush University Medical Center, Chicago, IL 60612, USA. howard_l_kaufman@rush.edu ·Future Oncol · Pubmed #20528232.

ABSTRACT: There are few effective treatment options available for patients with advanced melanoma. An oncolytic herpes simplex virus type 1 encoding granulocyte macrophage colony-stimulating factor (GM-CSF; Oncovex(GM-CSF)) for direct injection into accessible melanoma lesions resulted in a 28% objective response rate in a Phase II clinical trial. Responding patients demonstrated regression of both injected and noninjected lesions highlighting the dual mechanism of action of Oncovex(GM-CSF) that includes both a direct oncolytic effect in injected tumors and a secondary immune-mediated anti-tumor effect on noninjected tumors. Based on these preliminary results a prospective, randomized Phase III clinical trial in patients with unresectable Stage IIIb or c and Stage IV melanoma has been initiated. The rationale, study design, end points and future development of the Oncovex(GM-CSF) Pivotal Trial in Melanoma (OPTIM) trial are discussed in this article.

5 Article Single-incision laparoscopic surgery for intra-abdominal metastatic melanoma. 2011

Turner, Jacquelyn / Myers, Jonathan A / Titze, Jill / Kaufman, Howard L / Bines, Steven D. ·Department of General Surgery, Rush University Medical Center, Chicago, Illinois, USA. ·Am Surg · Pubmed #21944502.

ABSTRACT: -- No abstract --