Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Melanoma: HELP
Articles by Nathalie Lassau
Based on 13 articles published since 2009
(Why 13 articles?)
||||

Between 2009 and 2019, N. Lassau wrote the following 13 articles about Melanoma.
 
+ Citations + Abstracts
1 Guideline French updated recommendations in Stage I to III melanoma treatment and management. 2017

Guillot, B / Dalac, S / Denis, M G / Dupuy, A / Emile, J F / De La Fouchardiere, A / Hindie, E / Jouary, T / Lassau, N / Mirabel, X / Piperno Neumann, S / De Raucourt, S / Vanwijck, R. ·Dermatology Department, CHU Montpellier. · Dermatology Department, CHU Dijon. · Laboratory of Biochemistry, CHU Nantes. · Dermatology Department, CHU Rennes. · Laboratory of Pathology, AP-HP Ambroise Paré Hospital, Boulogne, France. · Laboratory of Pathology, Centre Léon Bérard Lyon. · Department of Nuclear medicine, CHU Bordeaux. · Dermatology Department, CH Pau. · Department of Radiology, Institut Gustave Roussy Villejuif. · Department of Radiotherapy, Centre Oscar Lambret Lille. · Institut Curie, Paris, France. · 1 Avenue du 6 Juin, 1945, 14000 Caen, France. · Louvain Catholic University, Brussels, Belgium. ·J Eur Acad Dermatol Venereol · Pubmed #28120528.

ABSTRACT: As knowledge continues to develop, regular updates are necessary concerning recommendations for practice. The recommendations for the management of melanoma stages I to III were drawn up in 2005. At the request of the Société Française de Dermatologie, they have now been updated using the methodology for recommendations proposed by the Haute Autorité de Santé in France. In practice, the principal recommendations are as follows: for staging, it is recommended that the 7th edition of AJCC be used. The maximum excision margins have been reduced to 2 cm. Regarding adjuvant therapy, the place of interferon has been reduced and no validated emerging medication has yet been identified. Radiotherapy may be considered for patients in Stage III at high risk of relapse. The sentinel lymph node technique remains an option. Initial examination includes routine ultrasound as of Stage II, with other examinations being optional in stages IIC and III. A shorter strict follow-up period (3 years) is recommended for patients, but with greater emphasis on imaging.

2 Guideline [Update to the recommendations for management of melanoma stages I to III]. 2016

Guillot, B / Dalac, S / Denis, M G / Dupuy, A / Emile, J-F / De La Fouchardière, A / Hindie, E / Jouary, T / Lassau, N / Mirabel, X / Piperno Neumann, S / De Raucourt, S / Vanwijck, R. ·Département de dermatologie, hôpital Saint-Éloi, CHU de Montpellier, 34295 Montpellier cedex 5, France. Electronic address: b-guillot@chu-montpellier.fr. · Service de dermatologie, hôpital du Bocage sud, CHU de Dijon, BP 1542, 21079 Dijon cedex, France. · Laboratoire de biochimie, institut de biologie, 9, quai Moncousu, 44093 Nantes cedex, France. · Service de dermatologie, CHU de Rennes, Rennes, France. · Service d'anatomie pathologique, CHU Ambroise-Paré-Boulogne, 92104 Boulogne cedex, France. · Centre anticancéreux Léon-Bérard, 28, rue Laennec, 69008 Lyon, France. · Service de médecine nucléire Sud et Pellegrin, CHU de Bordeaux, Bordeaux, France. · Service de médecine, centre hospitalier de Pau, 64000 Pau, France. · Service d'imagerie médicale, institut Gustave-Roussy, 94800 Villejuif, France. · Centre Oscar-Lambret, 3, rue Fréderic-Combemale, 59000 Lille, France. · Institut Curie, 26, rue d'Ulm, 75005 Paris, France. · 1, avenue du 6-Juin, 14000 Caen, France. · Université catholique de Louvain, 10, avenue Hippocrate, 1200 Bruxelles, Belgique. ·Ann Dermatol Venereol · Pubmed #27527567.

ABSTRACT: As knowledge continues to develop, regular updates are necessary concerning recommendations for practice. The recommendations for the management of melanoma stages I to III were drawn up in 2005. At the request of the Société Française de Dermatologie, they have now been updated using the methodology for recommendations proposed by the Haute Autorité de Santé. In practice, the principal recommendations are as follows: for staging, it is recommended that the 7th edition of AJCC be used. The maximum excision margins have been reduced to 2cm. Regarding adjuvant therapy, the place of interferon has been reduced and no validated emerging medication has yet been identified. Radiotherapy may be considered for patients in stage III at high risk of relapse. The sentinel lymph node technique remains an option. Initial examination includes routine ultrasound as of stage II, with other examinations being optional in stages IIC and III. A shorter strict follow-up period (3years) is recommended for patients, but with greater emphasis on imaging.

3 Guideline [Guidelines for stage I to III melanoma]. 2016

Guillot, Bernard / Dalac, Sophie / Denis, Marc / Dupuy, Alain / Emile, Jean François / De La Fouchardiere, Arnaud / Hindie, Elif / Jouary, Thomas / Lassau, Nathalie / Mirabel, Xavier / Piperno Neumann, Sophie / De Raucourt, Sixtine / Vanwijck, Romain. ·Département de dermatologie, hôpital Saint-Eloi, CHU de Montpellier, 34295 Montpellier cedex 5, France. Electronic address: b-guillot@chu-montpellier.fr. · Service de dermatologie, hôpital du Bocage sud, CHU de Dijon, BP 1542, 21079 Dijon cedex, France. · Laboratoire de biochimie, institut de biologie, 9, quai Moncousu, 44093 Nantes cedex, France. · Service de dermatologie, CHU de Rennes, Rennes, France. · Service d'anatomie pathologique, CHU Ambroise-Paré Boulogne, 92104 Boulogne cedex, France. · Centre anticancéreux Léon-Bérard, 28, rue Laennec, 69008 Lyon, France. · Service de médecine nucléire sud et pellegrin, CHU de Bordeaux, Bordeaux, France. · Service de médecine, CH de Pau, 64000 Pau, France. · Service d'imagerie médicale, institut Gustave-Roussy, 94800 Villejuif, France. · Centre Oscar-Lambret, 3, rue Fréderic-Combemale, 59000 Lille, France. · Institut Curie, 26, rue d'Ulm, 75005 Paris, France. · Sixtine, 1, avenue du 6 juin, 14000 Caen, France. · Université catholique de Louvain, avenue Hippocrate, 10 B-1200 Bruxelles, Belgique. ·Bull Cancer · Pubmed #27456259.

ABSTRACT: -- No abstract --

4 Review Dynamic contrast-enhanced ultrasonography (DCE-US): a new tool for the early evaluation of antiangiogenic treatment. 2010

Lassau, Nathalie / Chebil, Mohamed / Chami, Linda / Bidault, Sophie / Girard, Elizabeth / Roche, Alain. ·Imaging Department, Institut Gustave Roussy, Villejuif, France. lassau@igr.fr ·Target Oncol · Pubmed #20379790.

ABSTRACT: Dynamic contrast-enhanced ultrasonography (DCE-US) is a new functional technique enabling a quantitative assessment of solid tumor perfusion using raw linear data. DCE-US allows the calculation of parameters as slope of wash-in or area under the curve (AUC) representing, respectively, blood flow or blood volume. Reduction in tumor vascularization can easily be detected in responders after 1 or 2 weeks and is correlated with progression-free survival and overall survival in renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). DCE-US is supported by the French National Cancer Institute (INCa), which is currently studying the technique in metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors and renal cell carcinoma, as well as in primary hepatocellular carcinoma, to establish the optimal perfusion parameters and timing for quantitative anticancer efficacy assessments. Currently 490 patients are included in 20 centers and the preliminary results on 400 patients with 1,096 DCE-US demonstrated that AUC could be a robust parameter to predict response.

5 Article Molecular ultrasound imaging using contrast agents targeting endoglin, vascular endothelial growth factor receptor 2 and integrin. 2015

Leguerney, Ingrid / Scoazec, Jean-Yves / Gadot, Nicolas / Robin, Nina / Pénault-Llorca, Frédérique / Victorin, Steeve / Lassau, Nathalie. ·IR4 M, UMR 8081, Paris-Sud University, CNRS, Orsay, France. Electronic address: ingrid.leguerney@gustaveroussy.fr. · Anipath, Faculté Laennec, Université Lyon 1, Lyon, France. · Département d'anatomie et de cytologie pathologiques, Centre Jean Perrin, Clermont-Ferrand, France. · IR4 M, UMR 8081, Paris-Sud University, CNRS, Orsay, France. ·Ultrasound Med Biol · Pubmed #25308938.

ABSTRACT: Expression levels of endoglin, αv integrin and vascular endothelial growth factor receptor 2 (VEGFR2) were investigated using targeted, contrast-enhanced ultrasonography in murine melanoma tumor models. Microvasculature and expression levels of biomarkers were investigated using specific contrast agents conjugated with biotinylated monoclonal antibodies. Ultrasound signal intensity from bound contrast agents was evaluated in two groups of mice: control mice and mice treated with sorafenib. Expression levels were analyzed by immunohistochemistry. Endoglin biomarkers were more highly expressed than αv integrin and VEGFR2. Endoglin decreased in the sorafenib group, whereas it tended to increase with time in the control group. Targeted ultrasound contrast agents may be used for non-invasive longitudinal evaluation of tumor angiogenesis during tumor growth or therapeutic treatment in preclinical studies. Endoglin protein, which plays an important role in angiogenesis, seems to be a target of interest for detection of cancer and for prediction of therapeutic efficacy.

6 Article Dynamic contrast-enhanced ultrasound parametric maps to evaluate intratumoral vascularization. 2015

Pitre-Champagnat, Stephanie / Leguerney, Ingrid / Bosq, Jacques / Peronneau, Pierre / Kiessling, Fabian / Calmels, Lucie / Coulot, Jeremy / Lassau, Nathalie. ·From the *IR4M, UMR8081, CNRS, University of Paris-Sud; †Research Department, Gustave Roussy, ‡Department of Bio-pathology, Gustave Roussy, Villejuif, France; §Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany. ·Invest Radiol · Pubmed #25275834.

ABSTRACT: OBJECTIVES: The purposes of this study were to assess the reliability of parametric maps from dynamic contrast-enhanced ultrasound (DCE-US) to reflect the heterogeneous distribution of intratumoral vascularization and to predict the tissue features linked to vasculature. This study was designed to compare DCE-US parametric maps with histologic vascularity measurements. MATERIALS AND METHODS: Dynamic contrast-enhanced ultrasound was performed on 17 melanoma-bearing nude mice after a 0.1-mL bolus injection of SonoVue (Bracco SPA, Milan, Italy). The parametric maps were developed from raw linear data to extract pixelwise 2 semiquantitative parameters related to perfusion and blood volume, namely, area under the curve (AUC) and peak intensity (PI). The mathematical method to fit the time-intensity curve for each pixel was a polynomial model used in clinical routine and patented by the team. Regions of interest (ROIs) were drawn on DCE-US parametric maps for whole tumors and for several local areas of 15 mm within each tumor (iROI), the latter reflecting the heterogeneity of intratumoral blood volume. As the criterion standard correlation, microvessel densities (MVDs) were determined for both ROI categories. In detail, for all iROI of 15 mm, MVD and maturity were divided separately for vessels of 0 to 10 μm, 10 to 40 μm, and greater than 40 μm in diameter, and the results were correlated with the ultrasound findings. RESULTS: Among the 17 studied mice, a total of 64 iROIs were analyzed. For the whole-tumor ROI set, AUC and PI values significantly correlated with MVD (rAUC = 0.52 [P = 0.0408] and rPI = 0.70 [P = 0.0026]). In the case of multiple iROI, a strong linear correlation was observed between the DCE-US parameters and the density of vessels ranging in their diameter from 0 to 10 μm (rAUC = 0.68 [P < 0.0001]; rPI = 0.63 [P < 0.0001]), 10 to 40 μm (rAUC = 0.98 [P = 0.0003]; rPI = 0.98 [P = 0.0004]), and greater than 40 μm (rAUC = 0.86 [P = 0.0120]; rPI = 0.92 [P = 0.0034]), respectively. However, the DCE-US parameter values of perfusion and blood volume were not significantly different according to the diameters (AUC: P = 0.1731; PI: P = 0.2918) and maturity of blood vessels. CONCLUSIONS: Parametric maps of DCE-US can be reliably established from raw linear data and reflect the heterogeneous histological measures of vascularization within tumors. In contrast, the values of DCE-US parametric maps (AUC, PI) do not allow deduction of heterogeneous tissue features such as the diameters and maturity of vascular networks.

7 Article Standardization of dynamic contrast-enhanced ultrasound for the evaluation of antiangiogenic therapies: the French multicenter Support for Innovative and Expensive Techniques Study. 2012

Lassau, Nathalie / Chapotot, Louis / Benatsou, Baya / Vilgrain, Valérie / Kind, Michèle / Lacroix, Joëlle / Cuinet, Marie / Taieb, Sophie / Aziza, Richard / Sarran, Antony / Labbe, Catherine / Gallix, Benoît / Lucidarme, Olivier / Ptak, Yvette / Rocher, Laurence / Caquot, Louis Michel / Chagnon, Sophie / Marion, Denis / Luciani, Alain / Uzan-Augui, Joëlle / Koscielny, Serge. ·Ultrasonography Unit, Imaging Department, Institut Gustave Roussy, 94805 Villejuif, France. lassau@igr.fr ·Invest Radiol · Pubmed #23095862.

ABSTRACT: OBJECTIVES: The objectives of this study are to describe the standardization and dissemination of dynamic contrast-enhanced ultrasound (DCE-US) for the evaluation of antiangiogenic treatments in solid tumors across 19 oncology centers in France and to define a quality score to account for the variability of the evaluation criteria used to collect DCE-US data. MATERIALS AND METHODS: This prospective Soutien aux Techniques Innovantes Coûteuses (Support for Innovative and Expensive Techniques) DCE-US study included patients with metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors, renal cell carcinoma and patients with primary hepatocellular carcinoma tumors treated with antiangiogenic therapy. The DCE-US method was made available across 19 oncology centers in France. Overall, 2339 DCE-US examinations were performed by 65 radiologists in 539 patients.One target site per patient was studied. Standardized DCE-US examinations were performed before treatment (day 0) and at days 7, 15, 30, and 60. Dynamic contrast-enhanced ultrasound data were transferred from the different sites to the main study center at the Institut Gustave-Roussy for analysis. Quantitative analyses were performed with a mathematical model to determine 7 DCE-US functional parameters using raw linear data. Radiologists had to evaluate 6 criteria that were potentially linked to the precision of the evaluation of these parameters: lesion size, target motion, loss of target, clear borders, total acquisition of wash-in, and vascular recognition imaging window adapted to the lesion size.Eighteen DCE-US examinations were randomly selected from the Soutien aux Techniques Innovantes Coûteuses (Support for Innovative and Expensive Techniques) database. Each examination was quantified twice by 8 engineers/radiologists trained to evaluate the perfusion parameters. The intraobserver variability was estimated on the basis of differences between examinations performed by the same radiologist. The mean coefficient of variability associated with each quality criterion was estimated. The final quality score, ranging from 0 to 5, was defined according to the value of coefficient of variability for each criterion. RESULTS: A total of 2062 examinations were stored with raw linear data. Five criteria were found to have a major impact on quality: lesion size, motion, loss of target, borders, and total acquisition of wash-in. Only 3% of the examinations were of poor quality (quality of 0); quality was correlated with the radiologists' experience, such that it was significantly higher for radiologists who had performed more than 60 DCE-US examinations (P < 0.0001). CONCLUSIONS: The DCE-US methodology has been successfully provided to several centers across France together with strict rules for quality assessment. Only 3% of examinations carried out at these centers were considered not interpretable.

8 Article Assessment of quantitative perfusion parameters by dynamic contrast-enhanced sonography using a deconvolution method: an in vitro and in vivo study. 2012

Gauthier, Marianne / Tabarout, Farid / Leguerney, Ingrid / Polrot, Mélanie / Pitre, Stéphanie / Peronneau, Pierre / Lassau, Nathalie. ·Laboratoire d'Imagerie du Petit Animal, Unité Mixte de Recherche, Institut Gustave Roussy, Pavillon de Recherche I, 39 rue Camille Desmoulins, 94805 Villejuif, France. marianne.gauthier@igr.fr ·J Ultrasound Med · Pubmed #22441917.

ABSTRACT: OBJECTIVES: The purpose of this study was to investigate the impact of the arterial input on perfusion parameters measured using dynamic contrast-enhanced sonography combined with a deconvolution method after bolus injections of a contrast agent. METHODS: The in vitro experiments were conducted using a custom-made setup consisting of pumping a fluid through a phantom made of 3 intertwined silicone pipes, mimicking a complex structure akin to that of vessels in a tumor, combined with their feeding pipe, mimicking the arterial input. In the in vivo experiments, B16F10 melanoma cells were xenografted to 5 nude mice. An ultrasound scanner combined with a linear transducer was used to perform pulse inversion imaging based on linear raw data throughout the experiments. A mathematical model developed by the Gustave Roussy Institute (patent WO/2008/053268) and based on the dye dilution theory was used to evaluate 7 semiquantitative perfusion parameters directly from time-intensity curves and 3 quantitative perfusion parameters from the residue function obtained after a deconvolution process developed in our laboratory based on the Tikhonov regularization method. We evaluated and compared the intraoperator variability values of perfusion parameters determined after these two signal-processing methods. RESULTS: In vitro, semiquantitative perfusion parameters exhibited intraoperator variability values ranging from 3.39% to 13.60%. Quantitative parameters derived after the deconvolution process ranged from 4.46% to 11.82%. In vivo, tumors exhibited perfusion parameter intraoperator variability values ranging from 3.74% to 29.34%, whereas quantitative ones varied from 5.00% to 12.43%. CONCLUSIONS: Taking into account the arterial input in evaluating perfusion parameters improves the intraoperator variability and may improve the dynamic contrast-enhanced sonographic technique.

9 Article Combining functional imaging and interstitial pressure measurements to evaluate two anti-angiogenic treatments. 2012

Leguerney, Ingrid / Lassau, Nathalie / Koscielny, Serge / Rodrigues, Mélanie / Massard, Christophe / Rouffiac, Valérie / Benatsou, Baya / Thalmensi, Jessie / Bawa, Olivia / Opolon, Paule / Peronneau, Pierre / Roche, Alain. ·IR4M/UMR 8081, Paris-Sud University, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France. ingrid.leguerney@igr.fr ·Invest New Drugs · Pubmed #20924644.

ABSTRACT: BACKGROUND: Interstitial hypertension is responsible for poor capillary blood flow and hampered drug delivery. The efficacy of combined sorafenib/bevacizumab treatment given according to different administration schedules has been evaluated by measuring both interstitial pressure (IP) and quantitative dynamic contrast-enhanced ultrasonography (DCE-US) parameters in melanoma-bearing mice. MATERIAL AND METHODS: [corrected] Sixty mice were xenografted with B16F10 melanoma. Animals received a daily administration over 4 days (D0 to D3) of either sorafenib at 30 mg/kg, bevacizumab at 2.5 mg/kg alone, or different schedules of combined treatments. Perfusion parameters determined using an Aplio® sonograph (Toshiba) with SonoVue® contrast agent (Bracco) were compared to IP measurements using fiberoptic probes (Samba®) at D0, D2, D4, D8. RESULTS: The mean baseline IP values ranged between 6.55 and 31.29 mmHg in all the groups. A transient IP decrease occurred at D2 in all treated groups, and especially in the concomitant group which exhibited a significant IP reduction compared to D0. A significant decrease in both the peak intensity and the area under the curve was observed at D4 in the group with concomitant administration of both molecules which yielded maximal inhibition of the tumor volume and the number of vessels. No correlation was found between IP values and volume or perfusion parameters, indicating complex relationships between IP and vascularization. No IP gradients were found between the center and the periphery but IP values in these two regions were significantly correlated (R = 0.93). CONCLUSION: The results suggest that IP variations could be predictive of vascular changes and that one single IP measurement is sufficient to fully characterize the whole tumor.

10 Article Imaging of melanoma: usefulness of ultrasonography before and after contrast injection for diagnosis and early evaluation of treatment. 2011

Chami, Linda / Lassau, Nathalie / Chebil, Mohamed / Robert, Caroline. ·Imaging Department Institut Gustave Roussy, Villejuif, France; ·Clin Cosmet Investig Dermatol · Pubmed #21673868.

ABSTRACT: High-frequency ultrasound (8-14 MHz) is routinely used to display cutaneous melanomas. Maximum thickness measurement (Breslow index) has been shown to be well correlated to histologic findings for lesions of more than 0.75 mm. Some morphological criteria (strong delineation, hypoechoic texture, homogeneity) have been reported to help differentiate between malignant and benign pigmented blue lesions, but remain insufficient. Vascular ultrasound analysis using Doppler mode provides additional information and showed good specificity for malignancy (90%-100%), but variable sensitivity (34%-100%). Recent advances in ultrasound imaging allow functional evaluation. Likewise, dynamic contrast-enhanced ultrasound using contrast medium injection and specific perfusion and quantification software showed promising results in clinical and preclinical trials for early prediction of tumor response to target treatments.

11 Article Estimation of intra-operator variability in perfusion parameter measurements using DCE-US. 2011

Gauthier, Marianne / Leguerney, Ingrid / Thalmensi, Jessie / Chebil, Mohamed / Parisot, Sarah / Peronneau, Pierre / Roche, Alain / Lassau, Nathalie. ·Marianne Gauthier, Ingrid Leguerney, Jessie Thalmensi, Sarah Parisot, Pierre Peronneau, Alain Roche, Nathalie Lassau, IR4M, UMR 8081, CNRS, Paris-Sud 11 Univ, Gustave Roussy Institute, Villejuif 94805, France. ·World J Radiol · Pubmed #21512654.

ABSTRACT: AIM: To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). METHODS: The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). RESULTS: In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. CONCLUSION: AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

12 Article Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. 2011

Lassau, Nathalie / Chami, Linda / Chebil, Mohamed / Benatsou, Baya / Bidault, Sophie / Girard, Elizabeth / Abboud, Ghassen / Roche, Alain. ·Imaging Department, Institut Gustave Roussy, Villejuif, France. Nathalie.Lassau@igr.fr ·Discov Med · Pubmed #21276407.

ABSTRACT: Dynamic contrast-enhanced ultrasonography (DCE-US) is a current functional imaging technique enabling a quantitative assessment of tumor perfusion using raw linear data. DCE-US allows calculating several parameters as slope of wash-in or area under the curve representing, respectively, blood flow or blood volume. Decrease of vascularization can easily be detected in responders after 1 or 2 weeks of anti-angiogenic treatment for gastrointestinal stromal tumors (GIST), renal cell carcinoma (RCC), and hepatocellular carcinoma (HCC) and is correlated with progression-free survival and overall survival in RCC or HCC. DCE-US is supported by the French National Cancer Institute (INCa), which is currently studying the technique in metastatic breast cancer, melanoma, colon cancer, gastrointestinal stromal tumors and renal cell carcinoma, as well as in primary hepatocellular carcinoma, to establish the optimal perfusion parameters and timing for quantitative anticancer efficacy assessments. Currently 479 patients are included in 19 centers and the preliminary results on 400 patients with 1096 DCE-US demonstrated that the area under the curve (AUC) quantified at 1 month could be a robust parameter to predict response at 6 months.

13 Article Contrast ultrasonography: necessity of linear data processing for the quantification of tumor vascularization. 2010

Peronneau, P / Lassau, N / Leguerney, I / Roche, A / Cosgrove, D. ·Imaging Department, Institut Gustave Roussy, Villejuif, France. pierre.peronneau@igr.fr ·Ultraschall Med · Pubmed #20577941.

ABSTRACT: PURPOSE: This study is intended to compare the value of uncompressed ultrasonic data, obtained after linear power detection of the ultrasonic radiofrequencies that we call linear data, with usual compressed video data for the quantification of tumor perfusion, particularly for monitoring antivascular therapy. MATERIALS AND METHODS: To form a clinically useful ultrasonic image, the detected power of the received signals (linear data) is compressed in a quasi-logarithmic fashion in order to match the limited dynamic range of the video monitor. The resulting reduced range of signals from an injected contrast agent may limit the sensitivity to changes in the time-intensity curves. Following a theoretical evaluation of the effects of compression on time-intensity curves and as an in vivo example, we measured at different times the effects of an antivascular drug administered to mice bearing melanoma tumors. The mean time-intensity curves within the tumors after bolus injection of a contrast agent were determined using both linear and video data. Linearized data was recovered using the inverse of the true scanner's compression law, which was experimentally determined. Three features were extracted from the time-intensity curves: peak intensity (PI), time to peak intensity (TPI) and area under the curve in the wash-in phase (AUC (wash-in)). When contrast reached its maximum value, the coefficient of variation reflecting the heterogeneity of the intensity of contrast uptake within the tumor, was computed using both data sets. RESULTS: TPI was found to be similar with either data set (r = 0.98, p < 0.05, factor of 1.09). Linear PI and AUC (wash-in) had significantly earlier decreases after drug administration than video data (p = 0.015 and p = 0.03, respectively). The coefficient of variation was significantly lower when using video rather than linear data (p < 10 (-4)). CONCLUSION: In conclusion, the use of linear data is the only mathematically valid methodology for determining a tumor's time-intensity curve and, in practice, it allows earlier demonstration of responses to antivascular drugs.