Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Osteoporosis: HELP
Articles by Carmen P. Wong
Based on 4 articles published since 2010
(Why 4 articles?)
||||

Between 2010 and 2020, Carmen P. Wong wrote the following 4 articles about Osteoporosis.
 
+ Citations + Abstracts
1 Article Effects of Alcohol and Estrogen Receptor Blockade Using ICI 182,780 on Bone in Ovariectomized Rats. 2019

Wagner, Lindsay / Howe, Kathy / Philbrick, Kenneth A / Maddalozzo, Gianni F / Kuah, Amida F / Wong, Carmen P / Olson, Dawn A / Branscum, Adam J / Iwaniec, Urszula T / Turner, Russell T. ·Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon. · Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon. · Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon. ·Alcohol Clin Exp Res · Pubmed #31479513.

ABSTRACT: BACKGROUND: Estrogen signaling is essential for the sexual dimorphism of the skeleton, is required for normal bone remodeling balance in adults, and may influence the skeletal response to alcohol. High levels of alcohol consumption lower bone mass in ovary-intact but not ovariectomized (ovx) rats. However, the extremely rapid rate of bone loss immediately following ovx may obscure the effects of alcohol. We therefore determined (i) whether heavy alcohol consumption (35% caloric intake) influences bone in sexually mature ovx rats with established cancellous osteopenia and (ii) whether ICI 182,780 (ICI), a potent estrogen receptor signaling antagonist, alters the skeletal response to alcohol. METHODS: Three weeks following ovx, rats were randomized into 5 groups, (i) baseline, (ii) control + vehicle, (iii) control + ICI, (iv) ethanol (EtOH) + vehicle, or (v) EtOH + ICI, and treated accordingly for 4 weeks. Dual-energy X-ray absorptiometry, microcomputed tomography, blood measurements of markers of bone turnover, and gene expression in femur and uterus were used to evaluate response to alcohol and ICI. RESULTS: Rats consuming alcohol had lower bone mass and increased fat mass. Bone microarchitecture of the tibia and gene expression in femur were altered; specifically, there was reduced accrual of cortical bone, net loss of cancellous bone, and differential expression of 19/84 genes related to bone turnover. Furthermore, osteocalcin, a marker of bone turnover, was lower in alcohol-fed rats. ICI had no effect on weight gain, body composition, or cortical bone. ICI reduced cancellous bone loss and serum CTX-1, a biochemical marker of bone resorption; alcohol antagonized the latter 2 responses. Neither alcohol nor ICI affected uterine weight or gene expression. CONCLUSIONS: Alcohol exaggerated bone loss in ovx rats in the presence or absence of estrogen receptor blockade with ICI. The negligible effect of alcohol on uterus and limited effects of ICI on bone in alcohol-fed ovx rats suggest that estrogen receptor signaling plays a limited role in the action of alcohol on bone in a rat model for chronic alcohol abuse.

2 Article Polyethylene particles inserted over calvarium induce cancellous bone loss in femur in female mice. 2018

Philbrick, Kenneth A / Wong, Carmen P / Kahler-Quesada, Arianna M / Olson, Dawn A / Branscum, Adam J / Turner, Russell T / Iwaniec, Urszula T. ·Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA. · Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA. · Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA. ·Bone Rep · Pubmed #30094298.

ABSTRACT: Focal bone resorption (osteolysis) induced by wear particles contributes to long-term orthopedic joint failure. However, the impact of focal osteolysis on remote skeletal sites has received less attention. The goal of this study was to determine the effects of polyethylene particles placed over calvaria on representative axial and appendicular skeletal sites in female mice. Because recent work has identified housing temperature as an important biological variable in mice, response to particle treatment was measured in animals housed at room (22 °C) and thermoneutral (32 °C) temperature. Osteolysis was evident in skeletal tissue adjacent to particle insertion. In addition, cancellous bone loss was observed in distal femur metaphysis. The bone loss was associated with lower osteoblast-lined perimeter and lower mineralizing perimeter in distal femur, lower osteocalcin gene expression in tibia, and lower serum osteocalcin, suggesting the response was due, at least in part, to reduced bone formation. Mild cold stress induced by sub-thermoneutral housing resulted in cancellous bone loss in distal femur and lumbar vertebra but did not influence skeletal response to particles. In summary, the results indicate that focal inflammation induced by polyethylene particles has the potential to result in systemic bone loss. This is significant because bone loss is a risk factor for fracture.

3 Article High-Dietary Alpha-Tocopherol or Mixed Tocotrienols Have No Effect on Bone Mass, Density, or Turnover in Male Rats During Skeletal Maturation. 2017

Tennant, Katherine G / Leonard, Scott W / Wong, Carmen P / Iwaniec, Urszula T / Turner, Russell T / Traber, Maret G. ·1 Linus Pauling Institute, Oregon State University , Corvallis, Oregon, USA. · 2 Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University , Corvallis, Oregon, USA. ·J Med Food · Pubmed #28384008.

ABSTRACT: High levels of alpha-tocopherol, the usual vitamin E supplement, are reported to decrease bone mass in rodents; however, the effects of other vitamin E forms on the skeleton are unknown. To test the hypothesis that high intakes of various vitamin E forms or the vitamin E metabolite, carboxyethyl hydroxy chromanol, were detrimental to bone status, Sprague-Dawley rats (n = 6 per group, 11-week males) for 18 weeks consumed semipurified diets that contained adequate alpha-tocopherol, high alpha-tocopherol (500 mg/kg diet), or 50% Tocomin (250 mg mixed tocopherols and tocotrienols/kg diet). Vitamin E status was evaluated by measuring plasma, liver, and bone marrow vitamin E concentrations. Bone density, microarchitecture (cross-sectional volume, cortical volume, marrow volume, cortical thickness, and cancellous bone volume fraction, trabecular number, thickness, and spacing), and cancellous bone formation were assessed in the tibia using dual-energy X-ray absorptiometry, microcomputed tomography, and histomorphometry, respectively. In addition, serum osteocalcin was assessed as a global marker of bone turnover; gene expression in response to treatment was evaluated in the femur using targeted (osteogenesis related) gene profiling. No significant differences were detected between treatment groups for any of the bone endpoints measured. Vitamin E supplementation, either as alpha-tocopherol or mixed tocotrienols, while increasing vitamin E concentrations both in plasma and tissues, had no effect on the skeleton in rats.

4 Article Acute exposure to high dose γ-radiation results in transient activation of bone lining cells. 2013

Turner, Russell T / Iwaniec, Urszula T / Wong, Carmen P / Lindenmaier, Laurence B / Wagner, Lindsay A / Branscum, Adam J / Menn, Scott A / Taylor, James / Zhang, Ye / Wu, Honglu / Sibonga, Jean D. ·Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, USA. Electronic address: Russell.Turner@oregonstate.edu. ·Bone · Pubmed #23954507.

ABSTRACT: The present studies investigated the cellular mechanisms for the detrimental effects of high dose whole body γ-irradiation on bone. In addition, radioadaptation and bone marrow transplantation were assessed as interventions to mitigate the skeletal complications of irradiation. Increased trabecular thickness and separation and reduced cancellous bone volume fraction, connectivity density, and trabecular number were detected in proximal tibia and lumbar vertebra 14days following γ-irradiation with 6Gy. To establish the cellular mechanism for the architectural changes, vertebrae were analyzed by histomorphometry 1, 3, and 14days following irradiation. Marrow cell density decreased within 1day (67% reduction, p<0.0001), reached a minimum value after 3days (86% reduction, p<0.0001), and partially rebounded by 14days (30% reduction, p=0.0025) following irradiation. In contrast, osteoblast-lined bone perimeter was increased by 290% (1day, p=0.04), 1230% (3days, p<0.0001), and 530% (14days, p=0.003), respectively. There was a strong association between radiation-induced marrow cell death and activation of bone lining cells to express the osteoblast phenotype (Pearson correlation -0.85, p<0.0001). An increase (p=0.004) in osteoclast-lined bone perimeter was also detected with irradiation. A priming dose of γ-radiation (0.5mGy), previously shown to reduce mortality, had minimal effect on the cellular responses to radiation and did not prevent detrimental changes in bone architecture. Bone marrow transplantation normalized marrow cell density, bone turnover, and most indices of bone architecture following irradiation. In summary, radiation-induced death of marrow cells is associated with 1) a transient increase in bone formation due, at least in part, to activation of bone lining cells, and 2) an increase in bone resorption due to increased osteoclast perimeter. Bone marrow transplantation is effective in mitigating the detrimental effects of acute exposure to high dose whole body γ-radiation on bone turnover.