Pick Topic
Review Topic
List Experts
Examine Expert
Save Expert
  Site Guide ··   
Parkinson Disease: HELP
Articles by Hojin Kang
Based on 7 articles published since 2010
(Why 7 articles?)
||||

Between 2010 and 2020, Hojin Kang wrote the following 7 articles about Parkinson Disease.
 
+ Citations + Abstracts
1 Article PARIS reprograms glucose metabolism by HIF-1α induction in dopaminergic neurodegeneration. 2018

Kang, Hojin / Jo, Areum / Kim, Hyein / Khang, Rin / Lee, Ji-Yeong / Kim, Hanna / Park, Chi-Hu / Choi, Jeong-Yun / Lee, Yunjong / Shin, Joo-Ho. ·Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea; Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea. · HuGeX Co., Ltd. Seongnam, 462-122, South Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea; Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea. Electronic address: jshin24@skku.edu. ·Biochem Biophys Res Commun · Pubmed #29287724.

ABSTRACT: Our previous study found that PARIS (ZNF746) transcriptionally suppressed transketolase (TKT), a key enzyme in pentose phosphate pathway (PPP) in the substantia nigra (SN) of AAV-PARIS injected mice. In this study, we revealed that PARIS overexpression reprogrammed glucose metabolic pathway, leading to the increment of glycolytic proteins along with TKT reduction in the SN of AAV-PARIS injected mice. Knock-down of TKT in differentiated SH-SY5Y cells led to an increase of glycolytic enzymes and decrease of PPP-related enzymes whereas overexpression of TKT restored PARIS-mediated glucose metabolic shift, suggesting that glucose metabolic alteration by PARIS is TKT-dependent. Inhibition of PPP by either PARIS overexpression or TKT knock-down elevated the level of H

2 Article Identification of transketolase as a target of PARIS in substantia nigra. 2017

Kim, Hyein / Kang, Hojin / Lee, Yunjong / Park, Chi-Hu / Jo, Areum / Khang, Rin / Shin, Joo-Ho. ·Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea; HuGeX Co., Ltd., Seongnam 462-122, South Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea; Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea. · HuGeX Co., Ltd., Seongnam 462-122, South Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea; Samsung Medical Center (SMC), Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea. Electronic address: jshin24@skku.edu. ·Biochem Biophys Res Commun · Pubmed #28939041.

ABSTRACT: Recently, PARIS (ZNF746) is introduced as authentic substrate of parkin and transcriptionally represses PGC-1α by binding to insulin responsive sequences (IRSs) in the promoter of PGC-1α. The overexpression of PARIS selectively leads to the loss of dopaminergic neurons (DN) and mitochondrial abnormalities in the substantia nigra (SN) of Parkinson's disease (PD) models. To identify PARIS target molecules altered in SN region-specific manner, LC-MS/MS-based quantitative proteomic analysis is employed to investigate proteomic alteration in the cortex, striatum, and SN of AAV-PARIS injected mice. Herein, we find that the protein and mRNA of transketolase (TKT), a key enzyme in pentose phosphate pathway (PPP) of glucose metabolism, is exclusively decreased in the SN of AAV-PARIS mice. PARIS overexpression suppresses TKT transcription via IRS-like motif in the TKT promoter. Moreover, the reduction of TKT by PARIS is found in primary DN but not in cortical neurons, suggesting that PARIS-medicated TKT suppression is cell type-dependent. Interestingly, we observe the reduced level of TKT in the SN of PD patients but not in the cortex. These findings indicate that TKT might be a SN-specific target of PARIS, providing new clues to understand the mechanism underlying selective DNs death in PD.

3 Article Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. 2017

Kang, Hojin / Khang, Rin / Ham, Sangwoo / Jeong, Ga Ram / Kim, Hyojung / Jo, Minkyung / Lee, Byoung Dae / Lee, Yun Il / Jo, Areum / Park, ChiHu / Kim, Hyein / Seo, Jeongkon / Paek, Sun Ha / Lee, Yun-Song / Choi, Jeong-Yun / Lee, Yunjong / Shin, Joo-Ho. ·Department of Molecular Cell Biology, Division of Pharmacology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea. · Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea. · Department of Neuroscience, Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul, South Korea. · Department of New Biology, Daegu Geongbuk Institute of Science and Technology, Daegu, South Korea. · Research Core Facility, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon, South Korea. · HuGeX Co., Ltd. Seongnam, South Korea. · UNIST Central Research Facility, Ulsan National Institute of Science and Technology, Ulsan, South Korea. · Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea. ·Oncotarget · Pubmed #28611284.

ABSTRACT: Progressive dopaminergic neurodegeneration is responsible for the canonical motor deficits in Parkinson's disease (PD). The widely prescribed anti-diabetic medicine metformin is effective in preventing neurodegeneration in animal models; however, despite the significant potential of metformin for treating PD, the therapeutic effects and molecular mechanisms underlying dopaminergic neuroprotection by metformin are largely unknown.In this study, we found that metformin induced substantial proteomic changes, especially in metabolic and mitochondrial pathways in the substantia nigra (SN). Consistent with this data, metformin increased mitochondrial marker proteins in SH-SY5Y neuroblastoma cells. Mitochondrial protein expression by metformin was found to be brain region specific, with metformin increasing mitochondrial proteins in the SN and the striatum, but not the cortex. As a potential upstream regulator of mitochondria gene transcription by metformin, PGC-1α promoter activity was stimulated by metformin via CREB and ATF2 pathways. PGC-1α and phosphorylation of ATF2 and CREB by metformin were selectively increased in the SN and the striatum, but not the cortex. Finally, we showed that metformin protected dopaminergic neurons and improved dopamine-sensitive motor performance in an MPTP-induced PD animal model. Together these results suggest that the metformin-ATF2/CREB-PGC-1α pathway might be promising therapeutic target for PD.

4 Article Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson's disease model. 2017

Ham, Sangwoo / Lee, Yun-Il / Jo, Minkyung / Kim, Hyojung / Kang, Hojin / Jo, Areum / Lee, Gum Hwa / Mo, Yun Jeong / Park, Sang Chul / Lee, Yun Song / Shin, Joo-Ho / Lee, Yunjong. ·Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea. · Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea. ylee56@dgist.ac.kr. · Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu, 42988, Republic of Korea. ylee56@dgist.ac.kr. · College of Pharmacy, Chosun University, Gwangju, 501-759, Republic of Korea. · Well Aging Research Center, DGIST, Daegu, 42988, Republic of Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea. jshin24@skku.edu. · Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea. jshin24@skku.edu. · Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea. ylee69@skku.edu. ·Sci Rep · Pubmed #28366931.

ABSTRACT: Dysfunctional parkin due to mutations or post-translational modifications contributes to dopaminergic neurodegeneration in Parkinson's disease (PD). Overexpression of parkin provides protection against cellular stresses and prevents dopamine cell loss in several PD animal models. Here we performed an unbiased high-throughput luciferase screening to identify chemicals that can increase parkin expression. Among promising parkin inducers, hydrocortisone possessed the most favorable profiles including parkin induction ability, cell protection ability, and physicochemical property of absorption, distribution, metabolism, and excretion (ADME) without inducing endoplasmic reticulum stress. We found that hydrocortisone-induced parkin expression was accountable for cell protection against oxidative stress. Hydrocortisone-activated parkin expression was mediated by CREB pathway since gRNA to CREB abolished hydrocortisone's ability to induce parkin. Finally, hydrocortisone treatment in mice increased brain parkin levels and prevented 6-hydroxy dopamine induced dopamine cell loss when assessed at 4 days after the toxin's injection. Our results showed that hydrocortisone could stimulate parkin expression via CREB pathway and the induced parkin expression was accountable for its neuroprotective effect. Since glucocorticoid is a physiological hormone, maintaining optimal levels of glucocorticoid might be a potential therapeutic or preventive strategy for Parkinson's disease.

5 Article PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopaminergic Neuronal Survival. 2017

Lee, Yunjong / Stevens, Daniel A / Kang, Sung-Ung / Jiang, Haisong / Lee, Yun-Il / Ko, Han Seok / Scarffe, Leslie A / Umanah, George E / Kang, Hojin / Ham, Sangwoo / Kam, Tae-In / Allen, Kathleen / Brahmachari, Saurav / Kim, Jungwoo Wren / Neifert, Stewart / Yun, Seung Pil / Fiesel, Fabienne C / Springer, Wolfdieter / Dawson, Valina L / Shin, Joo-Ho / Dawson, Ted M. ·Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. · Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. · Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, FL 32224, USA. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA. Electronic address: vdawson@jhmi.edu. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, South Korea. Electronic address: jshin24@skku.edu. · Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130-2685, USA. Electronic address: tdawson@jhmi.edu. ·Cell Rep · Pubmed #28122242.

ABSTRACT: Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin cause autosomal-recessive Parkinson's disease through a common pathway involving mitochondrial quality control. Parkin inactivation leads to accumulation of the parkin interacting substrate (PARIS, ZNF746) that plays an important role in dopamine cell loss through repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) promoter activity. Here, we show that PARIS links PINK1 and parkin in a common pathway that regulates dopaminergic neuron survival. PINK1 interacts with and phosphorylates serines 322 and 613 of PARIS to control its ubiquitination and clearance by parkin. PINK1 phosphorylation of PARIS alleviates PARIS toxicity, as well as repression of PGC-1α promoter activity. Conditional knockdown of PINK1 in adult mouse brains leads to a progressive loss of dopaminergic neurons in the substantia nigra that is dependent on PARIS. Altogether, these results uncover a function of PINK1 to direct parkin-PARIS-regulated PGC-1α expression and dopaminergic neuronal survival.

6 Article Diaminodiphenyl sulfone-induced parkin ameliorates age-dependent dopaminergic neuronal loss. 2016

Lee, Yun-Il / Kang, Hojin / Ha, Young Wan / Chang, Ki-Young / Cho, Sung-Chun / Song, Sang Ok / Kim, Hyein / Jo, Areum / Khang, Rin / Choi, Jeong-Yun / Lee, Yunjong / Park, Sang Chul / Shin, Joo-Ho. ·Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea; Well Aging Research Center, Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, South Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea. · Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea. · Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea; Department of New Biology, Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, South Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea. Electronic address: jshin24@skku.edu. ·Neurobiol Aging · Pubmed #27103513.

ABSTRACT: During normal aging, the number of dopaminergic (DA) neurons in the substantia nigra progressively diminishes, although massive DA neuronal loss is a hallmark sign of Parkinson's disease. Unfortunately, there is little known about the molecular events involved in age-related DA neuronal loss. In this study, we found that (1) the level of parkin was decreased in the cerebellum, brain stem, substantia nigra, and striatum of aged mice, (2) diaminodiphenyl sulfone (DDS) restored the level of parkin, (3) DDS prevented age-dependent DA neuronal loss, and (4) DDS protected SH-SY5Y cells from 1-methyl-4-phenylpyridinium and hydrogen peroxide. Furthermore, pretreatment and/or post-treatment of DDS in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease model attenuated DA neuronal loss and restored motor behavior. DDS transcriptionally activated parkin via protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 signaling and DDS not only failed to induce parkin expression but also failed to rescue SH-SY5Y cells from 1-methyl-4-phenylpyridinium in the absence of ATF4. Herein, we demonstrated for the first time that DDS increased parkin level and served as a neuroprotective agent for age-dependent DA neuronal loss. Thus, DDS may be a potential therapeutic agent for age-related neurodegeneration.

7 Article Repression of rRNA transcription by PARIS contributes to Parkinson's disease. 2015

Kang, Hojin / Shin, Joo-Ho. ·Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea. · Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea; Mass Spectrometry, Research Core Facility, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea. Electronic address: jshin24@skku.edu. ·Neurobiol Dis · Pubmed #25315684.

ABSTRACT: The nucleolus is a compartment for the transcription of ribosomal RNA (rRNA) and assembly of ribosome subunits. Dysregulation of the nucleolus is considered to be a cellular stress event associated with aging and neurodegenerative disease, including Parkinson's disease (PD). We previously demonstrated that PARIS (PARkin Interacting Substrate, ZNF746) transcriptionally suppresses peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1α (PGC-1α) in PD and its accumulation results in selective dopaminergic neuronal death. However, functional knowledge of PARIS is limited, and no other studies have been performed to elucidate its function. Here, we used tandem-affinity purification to identify the binding partners of PARIS, showing that PARIS interacts with 160-kDa Myb-binding protein 1α (MYBBP1A), which suppresses rRNA transcription and the rRNA editing process. Interestingly, PARIS was also found to interact with the components of RNA polymerase I, occupied the promoter of rDNA, and suppressed rDNA transcription in vivo. Accordingly, we observed a reduction of rRNA levels and increased expression of p53, a molecular marker of nucleolar stress, in the substantia nigra of conditional parkin knockout mice, AAV-mediated PARIS overexpression mice, and in patients with sporadic PD. Together, our results suggest that dysfunction of the Parkin-PARIS pathway may play a deleterious role in rRNA transcription and contribute to PD pathogenesis.